Measuring Success in

 PredictionSPH 247
Statistical Analysis of
Laboratory Data

Binary Classification

- Suppose we have two groups for which each case is a member of one or the other, and that we know the correct classification ("truth"). We will call the two groups Disease and Healthy
- Suppose we have a prediction method that produces a single numerical value, and that small values of that number suggest membership in the Healthy group and large values suggest membership in the Disease group.
- How can we measure the success of the prediction method?
- First, consider the case when we have a cutoff that defines which group is predicted.

	Disease	Healthy	Total
Predict Disease	A (True Positive)	B (False Positive)	A+B (Positive Test)
Predict Healthy	C (False Negative)	D (True Negative)	C+D (Negative Test)
Total	A+C (Sick)	B+D (Healthy)	A+B+C+D

- A: True Positive (TP), hit
- D: True negative (TN), correct rejection
- B: False positive (FP), false alarm, Type I error
- C: False negative (FN), miss, Type II error

	Disease	Healthy	Total
Predict Disease	A (True Positive)	B (False Positive)	A+B (Positive Test)
Predict Healthy	C (False Negative)	D (True Negative)	C+D (Negative Test)
Total	A+C (Sick)	B+D (Healthy)	A+B+C+D

- Sensitivity, True Positive Rate (TPR), recall
- $\mathrm{TPR}=\mathrm{TP} / \mathrm{P}=\mathrm{TP} /(\mathrm{TP}+\mathrm{FN})=\mathrm{A} /(\mathrm{A}+\mathrm{C})=\mathrm{TP} /$ Sick
- Fraction of those with the Disease that are correctly predicted
- Specificity (SPC), True Negative Rate
- $\mathrm{SPC}=\mathrm{TN} / \mathrm{N}=\mathrm{TN} /(\mathrm{TN}+\mathrm{FP})=\mathrm{D} /(\mathrm{B}+\mathrm{D})=\mathrm{TN} /$ Healthy
- Fraction of those Healthy who are correctly predicted
- Precision, Positive Predictive Value (PPV)
- $\mathrm{PPV}=\mathrm{TP} /(\mathrm{TP}+\mathrm{FP})=\mathrm{A} /(\mathrm{A}+\mathrm{B})=\mathrm{TP} /$ Positive
- Fraction of those predicted to have the Disease who do have it

	Disease	Healthy	Total
Predict Disease	A (True Positive)	B (False Positive)	A + B (Positive Test)
Predict Healthy	C (False Negative)	D (True Negative)	C+D (Negative Test)
Total	A+C (Sick)	B+D (Healthy)	A+B+C+D

- Negative Predictive value (NPV)
- NPV = TN/(TN+FN) = D/(C+D) = TN/Negative
- Fraction of those predicted to be healthy who are healthy
- Fall-out or False Positive Rate (FPR)
- $\mathrm{FPR}=\mathrm{FP} / \mathrm{N}=\mathrm{FP} /(\mathrm{FP}+\mathrm{TN})=\mathrm{FP} /$ Healthy $=1-\mathrm{SPC}$
- Fraction of those healthy who are predicted to have the disease
- False Discovery Rate (FDR)
- $\mathrm{FDR}=\mathrm{FP} /(\mathrm{TP}+\mathrm{FP})=\mathrm{FP} /$ Positive $=1-\mathrm{PPV}$
- Fraction of those predicted to have the disease who are healthy
- Accuracy (ACC)
- $\mathrm{ACC}=(\mathrm{TP}+\mathrm{TN}) /(\mathrm{P}+\mathrm{N})$

Dependence on Population

- Sensitivity and Specificity depend only on the test, not on the composition of the population, other figures are dependent
- Sensitivity = fraction of patients with the disease who are predicted to have the disease $(\mathrm{p}=0.98)$.
- Specificity = fraction of patients who are healthy that are classified as healthy ($q=0.99$).
- If the population is 500 Disease and 500 healthy, then $\mathrm{TP}=490, \mathrm{FN}=10, \mathrm{TN}=495, \mathrm{FP}=5$ and $\mathrm{PPV}=490 /(490+5)=\mathbf{0 . 9 8 9 9}$

Dependence on Population

- Sensitivity = fraction of patients with the disease who are predicted to have the disease ($\mathrm{p}=0.98$).
- Specificity = fraction of patients who are healthy that are classified as healthy ($q=0.99$).
- If the population is 500 Disease and 500 healthy, then $\mathrm{TP}=$ $490, \mathrm{FN}=10, \mathrm{TN}=495, \mathrm{FP}=5$ and $\mathrm{PPV}=490 /(490+5)=\mathbf{0 . 9 8 9 9}$
- If the population is 100 Disease and 1000 healthy, then $\mathrm{TP}=$ $98, \mathrm{FN}=2, \mathrm{TN}=990, \mathrm{FP}=10$ and $\mathrm{PPV}=98 /(98+10)=\mathbf{0 . 9 0 7 4}$
- If the population is 100 Disease and 10,000 healthy, then TP $=98, \mathrm{FN}=2, \mathrm{TN}=9900, \mathrm{FP}=100$ and $\mathrm{PPV}=98 /(98+100)=\mathbf{0 . 4 9 4 9}$
$>$ mod3.glm <- glm(CHD~CHL*CAT+SMK+HPT+HPT:CHL+HPT:CAT,binomial, evans)
$>$ summary (mod3.glm)

Coefficients:

	Estimate	Std. Error	z value	Pr $(>\|z\|)$	
(Intercept)	-3.981678	1.307727	-3.045	0.00233	

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 438.56 on 608 degrees of freedom Residual deviance: 348.80 on 601 degrees of freedom AIC: 364.8

Number of Fisher Scoring iterations: 6

Histogram of predict(mod3.glm)


```
    table(fitted(mod3.glm)>0.5, evans$CHD)
```

	0	1
FALSE	533	54
TRUE	5	17

```
Sensitivity = 17/71 = 23.9%
Specificity = 533/538=99.1%
Accuracy = (533+17)/609=90.3%
```

$>$ table(fitted (mod3.glm) >0.1, evans\$CHD)

$0 \quad 1$	
FALSE 42122	
TRUE 11749	$\begin{aligned} & {[1]-2.554262} \\ & >\text { median (fitted(mod3.glm)) } \end{aligned}$
Sensitivity $=49 / 71=69.0 \%$	[1] 0.0721407
Specificity $=421 / 538=78.3 \% \%$	$>$ table(fitted (mod3.glm) >0.0721, evans\$CHD)
Accuracy $=(421+49) / 609=77.2 \%$	01
> 71/609	FALSE 29013
[1] 0.1165846	TRUE 24858

ROC Curve (Receiver Operating Characteristic)

- If we pick a cutpoint t, we can assign any case with a predicted value $\leq t$ to Healthy and the others to Disease.
- For that value of t, we can compute the number correctly assigned to Disease and the number incorrectly assigned to Disease (true positives and false positives).
- For t small enough, all will be assigned to Disease and for t large enough all will be assigned to Healthy.
- The ROC curve is a plot of true positive rate vs. false positive rate.
- If everyone is classified positive ($\mathrm{t}=\mathrm{o}$), then
$\mathrm{TPR}=\mathrm{TP} /(\mathrm{TP}+\mathrm{FN})=\mathrm{FP} /(\mathrm{FP}+\mathrm{o})=1$
$\mathrm{FPR}=\mathrm{FP} /(\mathrm{FP}+\mathrm{TN})=\mathrm{FP} /(\mathrm{FP}+\mathrm{o})=1$
- If everyone is classified negative ($\mathrm{t}=1$), then
$\mathrm{TPR}=\mathrm{TP} /(\mathrm{TP}+\mathrm{FN})=\mathrm{o} /(\mathrm{o}+\mathrm{FN})=\mathrm{o}$
$\mathrm{FPR}=\mathrm{FP} /(\mathrm{FP}+\mathrm{TN})=\mathrm{o} /(\mathrm{o}+\mathrm{TN})=\mathrm{o}$

R Packages for ROC Curves

- There seem to be many such packages.
- ROCR is the most comprehensive, but a simple ROC plot requires several steps.
- pROC seems easy to use.
- The package sm allows comparison of densities.
> library(pROC)
$>$ mod3.roc <- roc(evans\$CHD,fitted(mod3.glm))
> plot(mod3.roc)
Data: fitted(mod3.glm) in 538 controls (evans\$CHD 0) <
71 cases (evans\$CHD 1).
Area under the curve: 0.7839
> library(sm)
> sm.density.compare(fitted(mod3.glm), evans\$CHD)

Statistical Significance and Classification Success

- It is easier for a variable to be statistically significant than for the classification using that variable to be highly accurate, measured, for example, by the ROC curve.
- Suppose we have 100 patients, 50 in each group (say disease and control).
- If the groups are separated by 0.5 times the within group standard deviation, then the p-value for the test of significance will be around o.or but the classification will only be 60% correct.

Statistical Significance and Classification Success

- If the classification is to be correct 95% of the time, then the groups need to be separated by 3.3 times the within group standard deviation, and then the p-value for the test of significance will be around essentially o.

